Structure of Programming Languages – Lecture 3

CSCI 6636 – 4536

September, 2018
1 Finite Languages
 - Deterministic Finite State Machines
 - Deterministic Finite State Machines
 - Lexical Analysis
 - Regular Expressions

2 Creating a Lexer
 - Lexer Generators
 - Flex

3 Homework
1. Finite Languages

Relevance to Language Translation
Deterministic Finite State Machines
Lexical Analysis
Finite State Machines and Regular Languages

Finite state machines are important in the world of computing because:

- Lexical analysis, the first step of compilation, can be formally defined by a set of regular expressions.
- A language that can be defined by a set of regular expressions is called a regular language.
- A finite state machine can define any regular language. The two formalisms (machine, regular expressions) have the same theoretical power.
- A finite state machine is useful because it is visually easier to understand. However the formal definition of a modern programming language is given in terms of a set of regular expressions, which are easier to translate into the process of lexical analysis.
Deterministic Finite Automata (DFA)

A deterministic finite automaton is an abstract machine for classifying strings. It reads an input string and either accepts or rejects it. It has:

- A finite set of states, including one called S_0, the initial state.
- A subset of the states, A, called accepting states.
- An input alphabet.
- A state transition rule.

- The machine starts in state S_0.
- At each step, it reads an input character, c.
- Then it moves to another state, depending on c and the current state.
- After the last symbol has been read and processed, the string is accepted if the current state is in the set A.

In some generalizations, each state transition has an associated action.
Automaton 1

Alphabet: a, b
States: S₀, D, P, R
Starting state: S₀
Accepting states: {S₀, R}
What Language is Defined by this DFA?

A language is a set of strings. Automaton 1 accepts this language:

- The null string
- ab
- abab
- ababab
- abbbbbbbbbb
- abbbbbbbbbbabbbbab
- The length is not limited.

It rejects:

- Anything that begins with b.
- Anything that ends in a.
- Anything with two consecutive a’s.

Since the alphabet for this machine is a, b, we don’t concern ourselves with any other letters or symbols.
Automaton 2

Alphabet: a, b, d
States: S₀, D, P, R
Starting state: S₀
Accepting states: {R}
What Language is Defined by this DFA?

Automaton 2 accepts this language:

- bb
- dd
- bad
- bab
- dad
- daaaab
- baaaaaaaaaaaaaad
- The length is not limited.

It rejects:

- The null string.
- Anything that begins with a or ends with a.
- Anything with more than two of b/d.
A Shorthand Notation

- We use DFA is a mathematical abstraction: a machine with an alphabet, states, and a transition rule.
- A DFM is a generalization of the DFA with outputs.
- We use DFM’s to do the lexical analysis for programming languages.
- We represent the DFM with a graphical language of circles and transition links.
- I have introduced graphs that are fully explicit:
 - Every state is shown in the graph.
 - Every state has a transition rule for every symbol in the alphabet.
- Some professionals use graphs with implicit links to a Dead state. Any “missing” transition goes, by default, to the Dead state, which may not be shown, but is listed among the states of the DFA.
Short form of Automaton 2

Alphabet: a, b, d
States: S_0, D, P, R
Starting state: S_0
Accepting states: \{R\}
Lexical Analysis

The first step in translating a program is to identify the sequence of words and symbols that form the code.

- These are called tokens.
- If (as in FORTH) every token is separated from all the others by one or more whitespace characters, identifying the tokens is easy.
- If (as in FORTRAN) whitespace is ignored, identifying the tokens is much more difficult. In one case, it requires a look-ahead of several characters.
- Most languages fall between these extremes. Spaces are required in some places, but punctuation marks are often enough to mark the beginning and end of a token.
Lexical Analysis

Once a token is identified, it is classified as one of these:

- A comment, not really a token at all. It will not become part of the compiled code.
- A literal number, which will be converted to binary representation.
- An operator.
- A punctuation character
- A right- or left- grouping symbol.
- A language keyword.
- A word with no built-in meaning (variable name, class name).

All of these token types are important in the process of syntactic analysis.
Lexical analysis is the first stage of translation.

- The input is the source code of a program or a program unit.
- The **Lexer** reads the characters in the source code one at a time and identifies the primitive language units (words and punctuation) that make up the program.
- Illegal characters (if any) are identified.
- Comments are identified and discarded.
- The remaining units are called **lexemes**.
- A lexeme, together with its category-code is called a **token**.
- A lexer outputs a stream of tokens, ready for preprocessing or for parsing.
Example: Lexing a number in C

- A number must start with a digit, which may be followed by other digits.
- It may have a decimal point at the beginning or end of the digits, or in the middle.
- If a decimal point is present, an exponent may follow the last digit or the decimal point.
- An exponent consists of the letter E or e, followed by a + or − sign, followed by one or more digits, and ending in a precision indicator (D, d, F, f, L, or l).
DFA for recognizing a number in C.

Lexical form of a number in C

- Start token
- digit
- E e
- integer
- delimiter
- real
- D d
- F f
- L l
- delimiter
- + --
Lexing FORTH

- A rest-of–line comment starts with a backslash and ends with the next newline.
- An inline comment starts with (< space >) and ends with the first
).
- A string literal starts with .” (< space >) and ends with the first ” .
- A number is a sequence of digits delimited by whitespace.
- Any other collection of visible characters form a word.

See: LexFORTH.pdf
Regular Expressions

A regular expression is a string that describes a whole set of strings in some finite language, according to certain rules.

- An American logician named Stephen Cole Kleene studied regular languages in the 1950’s and introduced one notation for writing regular expressions.
- We use a somewhat different notation in the computer world to describe how to parse an input or to specify the lexical rules for computer languages.

Theorem (Kleene)

A language is definable by a regular expression if and only if it is recognized by a finite-state automaton.
Kleene Regular Expressions

To write a Kleene regular expression, you need:

- **An alphabet.** Each symbol in the alphabet is a regular expression.
- **A set of operators, in order of precedence:** $\ast \cdot +$
 - x^\ast means 0 or more copies of x.
 - $x \cdot y$ means x followed by y.
 - $x + y$ means the union of x and y: either x or y or both.
- **Grouping symbols to override the precedence:** ()

Variations on this idea are widely used in CS applications (grep, flex, Perl, ...).
Examples: Finite Languages Revisited

- Expression for Automaton 1: \((a \cdot b \cdot b^*)^*\)
- Expression for Automaton 2: \((b + d) \cdot a^* \cdot (b + d)\)

We use regular expressions to define the lexical structure of languages.

These are translated into efficient computer programs (lexers), based on finite state machines, that recognize the language forms.
2. Lexical Analysis

Lexer Generators

Flex: Fast Lexer Generator
Lexer Generators

A person implementing a compiler must produce a lexer for the language. This can be done in two ways.

(See: Wikipedia–Lexical Analysis)

- Write a custom lexer. This can be more efficient and can be the only solution if the language is complex or its lexemes are recursively defined.

- Write regular expressions that define the lexical structure. Then use these definitions as input to a lexer-generator, such as lex or flex, which turns them into a lexer for the language, implemented as a finite-state machine.
Flex: Fast Lexer Generator

Flex is the GNU lexer generator.

- It reads user-specified input files for a lexer description in the form of pairs of regular expressions and corresponding action-rules coded in C.
- The result of running flex is a C program, which must be compiled to create a lexer.
- The resulting lexer analyzes its input (source code) for occurrences of text matching the original regular expressions. Whenever it finds a match, it executes the corresponding action-rule.
Flex Regular Expressions-1

This is the extended regular expression syntax recognized by flex:

- `x` match a particular character
- `xy` an `x` followed by a `y` (this is Kleene’s \(\cdot\) operator)
- `.` match any single character (not the same as Kleene’s \(\cdot\))
- `x|y` either an `x` or a `y` (this is Kleene’s \(+\) operator).
- `x*` zero or more `x`’s
- `x+` one or more `x`’s (not the same as Kleene’s \(+\)).
- `x?` zero or one `x` (an optional `x`)
- `d{2}` exactly 2 d’s
- `d{2,}` 2 or more d’s
- `d{2,5}` from 2 to 5 d’s
- `[^A]` match any character except A. (A negated character.)
Flex Regular Expressions-2

This is the extended regular expression syntax recognized by flex:

- `[xyz]`
 a character class: x or y or z
- `[xyz]`*
 zero or more chars from the set x, y, z, in any order or combination.
- `[0-9]`
 a character class with a range of numbers (describes a decimal literal)
- `[a-zA-Z]`
 a character class with two ranges
- `[^A-Z\n]`
 a negated set of characters that includes a range
- `[a..z]{-}[lmno]`
 the set a...z with lmno removed

Plus several increasingly complex ways to name patterns and make patterns out of other patterns.
Examples: Flex Regular Expressions

\[(abb^*)^*\]
Automaton 1, Kleene syntax: \((a \cdot b \cdot b^*)^*\)

\[(ab^+)^*\]
Automaton 1, using the extended Flex syntax

\[[bd]a*[bd]\]
Automaton 2, Kleene syntax: \((b+d) \cdot a^* \cdot (b+d)\)

\[ab?c\]
A string that starts with and a and ends with a c and has an optional b in the middle.

\[0[xX][a-fA-F0-9]^*\]
A hex literal, in C.

\[^"\]
Any character except a double quote.

\[a\{-}\{eo\}\]
The set of characters a...z, excluding e and o.
Flex for FORTH

To analyze a FORTH program, the following rules should be applied in order. If one fails, try the next. If the first four rules fail, the last one will always succeed.

Let WS stand for a sequence of 1 or more whitespace characters. Input symbols are given in red ink, lexer symbols are black.

```
Comment        \ WS [ ^\n ]* \n
Comment ( WS [ ^) ]* ) WS

StringLiteral .” WS [ ^” ]* ” WS

Integer       –? [0–9 ^ WS]* WS

Word          [^WS]* WS
```

A recognizer for this language needs five accepting states. If you are in an accepting state when a newline or WS terminates a rule, the entire string that has been matched should be output as a token, with the category from the left column.
Hw 3: Finite-State Machines and Regular Expressions

1. Define a DFA with the alphabet \{a, b, c, d, e\}. Accept all strings that contain only vowels (‘a’ and ‘e’) . Reject all other inputs.

2. Write a Flex regular expression with the same alphabet that defines strings of letters containing only ‘a’ and ‘e’ , in any combination, any order, and any number.

3. Define a DFA that will process input strings of letters from a to e. Accept all strings of exactly 3-letters with a vowel in the middle. (Examples: dad, baa, aec, eee) Reject the null string and all inputs that do not have a vowel in the middle. (Examples: add, ell, fly).

4. Write a Flex regular expression that defines exactly the same language.
5. Define a DFA that accepts a legal C identifier. The rules are:
 1. An identifier can be composed of letters (both uppercase and lowercase letters), digits and underscore ‘_’ only.
 2. The identifier ends when the input is any letter other than those listed above.
 3. The first letter of identifier cannot be a digit.
 4. There is no limit on the length of an identifier, but it cannot be the null string.

6. Write FORTH function that displays your name. (Keep it simple.)

Read chapter 4.1 through 4.3 of the text.